CITRUS PSYLLA
Trioza erytreae (Del Guercio)

1 PEST PROFILE

1.1 Distribution and status

Citrus psylla is of economic significance in high-lying production areas of Limpopo Province, Mpumalanga, KwaZulu-Natal, parts of the Western Province and also in certain subtropical and coastal areas. The insect requires a relatively humid climate with moderate temperatures to survive. Citrus psylla therefore has endemic pest status in areas where these climatic conditions occur frequently. High temperatures combined with low humidity are lethal to the insect's first and second nymphal stages. As a result, psyllids tend to be relatively scarce during dry years, while assuming epidemic proportions during cool, humid summers. The summer climate in the low-lying interior areas of the Western and Eastern Cape tends to be so hot and dry that citrus psylla seldom occurs there.

The reason for this pest being of economic significance is that the adult insect is the vector of African greening disease caused by *Candidatus Liberibacter africanus* in citrus. It therefore has a high pest status in areas where greening disease is present. For this reason the pest status is not yet high in the Eastern Cape, even though the insect is present in the coastal areas.

The Asian citrus psyllid *Diaphorina citri* Kuwayama is not yet present in southern Africa, although many species of this genus can be found on indigenous plants other than citrus and may be caught on yellow sticky traps near bush. These psyllids usually have patterned wings and are brownish-grey.

1.2 Description

The adult psyllid is light yellow and approximately the size of an aphid with transparent wings. The insects are good fliers. Pointed, oval-shaped, yellow eggs are laid primarily along the edges of young leaves and shoots. First instar nymphs establish themselves on the lower surfaces of young leaves and their feeding activity causes cavities in the leaf tissue which appear as prominences on the upper surfaces. The nymphs lie in the cavities and complete five instars before emerging as adults.

1.3 Infestation sites on tree

The adult insect is attracted to new growth for feeding and oviposition purposes. However, hardened growth is also used in the absence of succulent new growth.

1.4 Damage

1.4.1 Symptoms

The characteristic yellow eggs on the edges of young leaves and the subsequent cavities and related prominences are the first signs of psyllid presence. In the case of severe infestations, young growth can be severely malformed as a result of nymphal activity.

1.4.2 Seasonal occurrence

Citrus psylla can occur throughout the year on young growth but numbers of adults are usually lowest on the spring flush (August). It is therefore a good strategy to control citrus psylla on the spring flush because it will take a long time for the population to build up thereafter. Without effective treatments against citrus psylla, adults are most abundant in September and October.

2 MANAGEMENT ASPECTS

Due to the importance of greening disease, new growth on young trees in areas where greening is problematic must be protected against psyllid infestation on a预防性 basis. It is uneconomical to protect all new growth on mature trees. On these trees the major growth flushes during August to October, November to December and February to March should be treated when signs of psyllid infestations are noted or when one adult per week is caught on a sticky yellow trap.

2.1 Infestation/Damage assessment

2.1.1 Non-bearing trees
2.1.1 Inspection

Due to the importance of greening disease in affected production areas it is not advisable to wait for signs of infestation on trees in this age group before applying treatment.

2.1.1.2 Treatment threshold

No infestation thresholds can be recommended for young non-bearing trees. Treatments must be applied preventively using systemic materials to protect all new growth.

2.1.2 Bearing trees

2.1.2.1 Inspection

The edges and lower surfaces of young leaves must be thoroughly inspected weekly at the commencement of each growth flush for the presence of psyllid eggs and newly settled nymphs.

2.1.2.2 Treatment threshold

Treatment must be initiated when one or more psyllid eggs and/or nymphs are noted on new growth or when one or more adult psyllids are caught per week on yellow traps.

2.2 Control options

2.2.1 Biological

Various parasitoids and predators attack citrus psylla eggs and nymphs. However, the parasitoids are hyperparasitised and do not reach adequate numbers to control the pest to the extent that the spread of greening disease will be stopped.

2.2.2 Cultural

Pruning stimulates tree growth which is subject to psyllid attack. Pruning should therefore be timed so that the regrowth coincides with a treatment that will kill psylla.

2.2.3 Plant protection products

2.2.3.1 Soil treatments

The systemic organophosphate material Rogor EC (dimethoate) can still be used as a soil treatment. It is applied under the foliage drip zone from where it is taken up by the roots and distributed through the tree. Three methods can be used to apply it:

- If flood irrigation is used the basin can first be filled with water and the required amount of Rogor EC can subsequently be distributed evenly over the water surface. Alternatively the material can be evenly applied to the surface of the basin which can then be filled with at least 25 mm water.
- Where micro-irrigation is used Rogor EC must be uniformly applied to the soil under the foliage drip zone using watering cans. Thereafter the normal irrigation programme must be activated to wash it into the soil.
- With the aid of fertigation apparatus Rogor EC can be directly fed into the pipe system used for micro-irrigation so that the mixture is applied during a normal irrigation round.

<table>
<thead>
<tr>
<th>Product</th>
<th>Dosage/m² drip zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogor EC</td>
<td>7.5 – 10 ml</td>
</tr>
</tbody>
</table>

Note that on bearing trees, Rogor EC can only be used up to 50% petal fall due to residue restrictions.

The application of Temik to non-bearing trees at 30 g/tree will control citrus psylla but this product will not be available in the near future.

Confidor 700 WG (or imidacloprid 350 SC generics) can be applied as a soil drench around the base of the stem of bearing trees for the control of citrus psylla. The rate is 4.5 g (9 ml for the SC) product in 1 litre of water per tree. Treatment must be followed by irrigation within 24 h.

2.2.3.2 Trunk treatments

Undiluted methamidophos can be applied to the trunks of citrus trees with a closed system applicator. Refer to TRUNK APPLICATION PROCEDURE in Chapter 2 for more information on these treatments. In countries
other than South Africa, monocrotophos SL can be used in the same way.

Undiluted Mospilan SL (or generic) can also be applied to citrus tree trunks at the rate of 2 ml/m² canopy surface area using a closed system applicator.

2.2.3.3 Spray treatments

The spraying of trees with conventional spray equipment is only recommended for trees with a trunk diameter in excess of 150 mm. One of the following materials can be applied as an outside film spray:

<table>
<thead>
<tr>
<th>Product</th>
<th>Dosage/100 ℓ water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mevinphos 150 EC</td>
<td>20 ml</td>
</tr>
<tr>
<td>Phosdrin 500 SL</td>
<td>6 ml</td>
</tr>
<tr>
<td>Chlorpyrifos 480 EC</td>
<td>60 ml</td>
</tr>
<tr>
<td>Dimethoate 400 EC</td>
<td>40 ml*</td>
</tr>
<tr>
<td>Dursban 750 WG</td>
<td>38 g</td>
</tr>
<tr>
<td>Profenofos 500 EC</td>
<td>75 ml*</td>
</tr>
</tbody>
</table>

*Only on spring flush before 50% petal fall

Comment

Due to the serious nature of greening disease it is difficult to conduct trials for registration that have an untreated control. Few chemicals are therefore registered for the control of this pest. However, several insecticides (other than Applaud) that are effective against mealybug and scale insects are likely to suppress citrus psylla for at least 2 weeks.